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DESIRABILITY OF USING A FAST SAMPLING RATE FOR COMPUTING WIND VELOCITY 
FROM PILOT-BALLOON DATA 
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ABSTRACT 

Advantages of using a fast sampling rate for providing raw data for computing wind velocities from pilot-balloon 
observations are discussed. Two independent approaches show that (for a given sampling rate) the errors in the 
mean wind computed through. a layer tend to be smaller the larger the layer. However, if many observations are 
used to compute the mean wind through a layer, the computed wind is more accurate than that obtained by using 
just two observations, one a t  the bottom and one a t  the top of the lnyer. Graphs are presented which give relative 
estimates of wind errors as a function of sampling interval, sampling rate, and mean wind speed. 

1. INTRODUCTION 
In  recent years, systems have been developed a t  ’White 

Sands Missile Range (WSMR) for collecting and process- 
ing pilot-balloon data in real time. One such system uses 
conventional manually operated balloon-tracking theodo- 
lites which have been modified for automatic readout. 
This allows the operators to track the balloon continuously 
and precludes the necessity of periodic stops for visual 
readings as w i t h  conventional methods. The angular 
data from the theodolites are continuously transmitted in 
analog form to a central point where they are digitized 
for processing by the computer. The system in general is 
discussed in two reports by Rachele and Duncan [2], [4]. 

The practice has been to use data digitized a t  the rate of 
one data frame per second (azimuth and elevation angles 
from each theodolite every second). 

A question has arisen as to the merit of having data 
available a t  a fast rate, particularly in view of results 
published by Barnett and Clarkson [l], obtained from 
empirical data, which state that data taken a t  a rate less 
than one frame per 20 sec. is subject to progressively 
greater error the shorter the time increment between 
observations. Specifically, the following is summarized 
from their paper: 

Five series of simultaneous observations from three 
theodolites were made to investigate the accuracy of 
double theodolite observations. The three theodolites A, 
B, C formed a triangle with two sides 1:OOO m. long and 
the other 1,414 m. long. Five sequences of pilot balloon 
observations were made with the three theodolites on each 
of five different days. On each day one sequence was 
made with a 5-sec. interval between observations, one 
with a 10-sec. interval, one with a 20-sec. interval, one 
with a 30-sec. interval, and one with a 60-sec. interval. 
Azimuth and elevation angles were read to 1/10 of a 
degree. 

The data were divided into three sets of double theodo- 
lite readings: theodolites A and B, B and C, and A and C. 
Simultaneous angles were used to calculate the horizon tal 
projection of the mean balloon path between two succes- 
sive observation times. This resulted in three wind 
vectors to represent the same wind condition experienced 
by the balloon between each two successive observation 
times. 

For each set of three wind vectors, the magnitude of the 
smallest was divided by the magnitude of the largest to 
obtain the “horizontal wind speed accuracy ratio.” A 
ratio of 100 percent is obtained only when all three vectors 
are of exactly the same magnitude. Likewise, the maxi- 
mum difference in direction between any two was called 
the “horizontal wind direction error.” In  this case, a 
smaller number indicates greater accuracy. 

To insure the validity of the results, observations for the 
first day were not used, the order in which the different 
observational time intervals were used was different each 
day, all sets of data for any one observation were discarded 
if any azimuth angle was within 5’ of a base line to another 
theodolite, and data were discarded for wind speeds less 
than 3 m.p.h. 

For each time inteIval, the means were found for the 
“horizontal wind speed accuracy ratio” and for the 
“horizontal wind direction error.” The results are shown 
in figure 1. 

The purpose of this report is to present an evaluation of 
theoretical results of using fast sampling rates (one per 
second) as in the real-time system. 

9. DISCUSSION 
I n  this evaluation, the following assumptions are made : 

(1) At least two theodolites are used. (2) There is no bias 
between the two theodolites, Le., no orientation or leveling 
errors, and no differences in precision. (3) There is no 
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FIGURE 1.-Speed accuracy ratio, and wind direction error as 
Graph functions of time interval between observation readings. 

by Barnett and Garkson [l]. 
FIGURE 2.-Error areas a t  times t o  and 11, for a true average wind v, and for a balloon moving normal to the base line. 

degrading of angle data through the transmission and 
digital encoding system.s. (4) Reasonable tracking con- 
ditions exist, i.e., the base line is of sufficient length, the 
balloon does not m.ove parallel to the base line, and is not 
directly above one of the operators. 

In  light of these assumptions, a specific .question must 
be answered. For what purposes are the wind velocity 
data to  be used? There are several possible uses, such as 
wind profile studies, space-time wind variability studies, 
wind shear determinations, ballistics, and low-level jet 
studies. Depending on the type and mode (real-time 
versus non-real-time, manual reduction versus computer 
reduction) of application, it is desirable to use either an 
average value through a height layer, such as in ballistics, 
or velocities a t  specific heights, as in profile or shear 
studies. 

An average, if desired, can be estimated by the equation 

where j ' ( t )  is the time derivatige of a function which 
describes the space points in the layer, and to and tl 
are the times when the balloon is a t  the bottom and top 
of the layer. This implies that regardless of the layer 
thickness the ability to  determine the average is dependent 
on how wellf(t) can be evaluated at  the bottom and top 
of the layer. 

In  the simplest case (fig. 2 ) ,  equation (1) for the speed 
part only can be written 

where m* is the computed mean wind speed including 
precision errors, p i s  the true mean speed for time interval 
( t l - to)  and Eo, El are errors which are assumed to be 
independent of one another. The effect of errors on 
direction was not made part of this study. 

i.e., the error is proportional to the inter- 
section of the horizontal projection of the precision cones 
(fig. 3), or E= KJX where K is a proportionality constant. 

The area, A, can be computed by geometric and trigo- 
nometric applications (see fig. 3). A small angle approxi- 
mation of A (the small angle approximation is applied 
to the angle B) results in the following form-ula: 

Let E a 

A= 4L2B2[sin $ sin e-B2 cos 9 cos 8 cos2 ($+e)] 
(3) sin (#+e)[sin2 ( $ + e ) - 4 ~ ~  cos2 (#+e)] 

where 

R2+L2-flR2, e=cos- p2R2+ L2- R2 
2RL 2pLR *=cos-' 

B is half the range of azimuth precision, and p is a factor as 
shown in figures 3 and 4. This approximation is valid for 
B small, a reasonable assumption, and when the balloon 
is not on or very near the base line. In addition, from 
figure 4, 

R=[Rg+2W(t-tt,) JRg-X; COS 4 



I 200 MONTHLY WEATHER REVIEW Vol. 95, No. 4 

. L A  

FIGURE 4.-Geometrical representation interrelatiLg the base line 
L, range R, zo, Ro, and the average velocity W for a balloon 
moving a t  the angle 4 from the normal to the base line. 

I 
I 
A graph of the absolute value of I(W*/W)-l( as a 

function of &-to) for K-1 is shown in figure 5 for 
different values of m. The value K= 1 was chosen for 
convenience in drawing the graphs. It is easy to see that 
if a different value of K were used, the graphs would 
still have the same general shape. The most significant 
feature of the graph is that the error is greater for smaller 
(tl-toj, which is in agreement with Barnett and Clarkson’s 

1 results. Hence, two independent approaches have shown 
R that the errors in the mean wind computed through a 

layer tend to be smaller the “longer the observational 
time interval (i.e. the thicker the layer) .” 

Up to this point, errors due only to  instrument precision 
have been considered. This can be extended to include 
the effects of operator errors (tracking) by observing that 
geometrically only B is affected and will in fact be increased 

then E can be written as when human tracking error is included. However, B 
d l  probably be smaller for larger (tl--to), but not less 
than the precision ,alone, since it is more difficult to track 
and read at  a fast rate (strictly a human limitation). 
Exceptions to  these general results occur when gross 
operator errors are made, and it is this situation which 
produces “spikes” in the data. These results substantiate 
the findings of Barnett and Clarkson; however, both 

Eo= * studies were based on the simple model-in particular, 
on the assumption that only one observation point is 
available a t  the bottom and top of each layer. 

and The following discussion shows conclusively tha t  
frequent observations through a layer will provide better 

2KLB Isin J.l sin ‘Os ‘Os ‘OS2 ($1+e1)]1‘2. results than only an observation a t  the top and bottom 
of the layer and hence that, except for very thin layers, 
the results depicted in figures 1 and 4 can be misleading. 
In  addition, it points out the need for minimizing B, 
which in turn suggests that tracking systems be used 
which eliminate the operator error (Glass [3]). 

A well known theorem from statistics (e.g., W adsworth 

appropriate and reasonable assumptions, the error in the 
mean mind (expressed in terms of a standard deviation) 

- -  
a 

FIGURE 3.-The relationship between error area, precision angle B 
and range R. Also shown in the graph is the significance of P. 

and 

p=- [R2-(XO-W(t- tO) sin +)2 

+(L-xo+w(t-to) sin ‘)z11’2’ (4) 
Since ExTix and 

4L2B2 [sin $ sin 8- B2 cos $ cos 0 cosz (#+e)], 
sin ($+O)[sin2 ($+0)-4B2 cos2 ($+e)] A= 

2KLB [sin $ sin e-B2 cos # cos e cos2 ($+e)]1’2 ( 5 )  
{sin ($+e) [sin2 ($+e)-4B2 cos2 ($+e)] ) l I 2  

E= 

where K is the proportionality constant. 
In particular, a t  times to and tl,  

2KLB [sin $o sin eo-B2 cos lcl0 cos eo  cos^ ($o+eo)ll/~ 
Isin ($o+eo) [sin2 ( r ~ ~ + e , ) - 4 ~ ~  cos2 ($o+eo)i } l I 2  

(6) 

El= Isin (d’l+el) ($1 fe1 ) -4Bz  cos2 ($l+el)] jl’* 

(7) 

Substituting equations (6) and (7) into ( 2 )  results in 

sin #o sin Oo-B2 cos $o cos Bo cos* ($,,+eo) 2KLB W*=j&- 
(ti-to) sin (+O+eO) ($o+eO)-4B2cos2 ($o+’o)I and Bryan [5]) be used to show that, subject to 

+sin w1+el) [sin2 ( + 1 + e , ) - 4 ~  cos2 (fi1+el)l (8) 
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FIGURE B.-Ratio of QW, to Q as a function of N for different values of (t,-to). 

as a function of time interval (sec.) between readings for base line L=3300 f t . ,  ZO= 1650 ft., K (the proportionality 
constant) =1.0, +=O", and Ro=3300 f t .  
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decreases as the number of measurements within the 
layer increases. 

Theorem: If { Xf}y - ,  are independent, normally dis 
tributed random variables with respective parameters 
( p l ,  ul) . . . , (p,, u,), and if are constants a t  
least one of which is nonzero, then the weighted sum 
X= za,Xi is normally distributed with parameters ( p ,  u) 
where 

and 

I 
This theorem is stated below. 

P=CarP* (9) 

u= JCa:u:. (10) 

In  the following analysis it will be assumed that if 
{ X r } f o  represents the 2-components of the position at  
times { t ,+iAt}:- , ,  then the Xi’s are independent, nor- 
mally distributed, random variables homoscedastic with 
standard deviation u. To derive an estimate of either 
W ,  or uwz it is necessary to make some assumption con- 
cerning the function X=-f(l). It is usually assumed 
that f (1 )  is linear over the time interval [to, to+NAt]. 
Under this assumption one can write ,f(n =al+b. Now 
equation (1) becomes WZ=a. Least squares techniques 
are applied to the pairs ( X z ,  ti):=,, to determine a 
( t z = t , + i A t ) .  One obtains 

i 

W, is of the form W,=2 aiXi .  Thus the theorem is appli- 
cable and uwz is 

I After considerable simplification this becomes 

(13) 

I 
I 

which clearly decreases as N increases and therefore 
substantiates the marked advantage of faster sampling 
as shown in figure 6 .  

function of N for different values of t,-to. Note that for 
(t,-to) = 10 sec. (which corresponds to a height interval 
of approximately 170 ft. for a conventional 100.gm. 

if one uses 10 points instead of 2 ;  whereas for (t,-to)=20 
sec., uw,/u is reduced by 50 percent if one uses 20 
points instead of 2. Whether these percentage improve 
ments are significant depends on the magnitude of U, 

which of course depends on the tracking system being 
used. 

I 
I 

Since u is not known, the ratio aw,/a ~7as  plotted as a 
I 

I balloon), uw,/u is reduced by approximately 30 percent 

I 

Also, note that uR;: for (1,-t0)=20 sec., is always 
approximately 50 percent of uwz for (t,--lo)=10 sec., 
so that the effect of (t,-to) in general overrides the 
effect due to N.  Therefore, if one can determine, for 
instance, that a height layer corresponding to 20 sec. of 
flight is suitable for an application instead of a 10-sec. 
layer there is a general improvement of 50 percent from 
use of the 20-sec. layer. In  turn, however, if N=20 
instead of 2 for the 20-sec. interval there is a further 
improvement of 50 percent. 

Finally, equation (13) does show that uw, decreases as 
1,- t o  increases which agrees with Barnett and Clarkson’s 
results for t,-to120 sec. but not with their results for 
t)20. This latter disagreement may be due both to the 
assumption that f ( t )  is linear (which was also assumed 
by Barnett and Clarkson), and to the fact that the 
assumption of homoscedasticity of the Xi’s probably 
becomes less valid for t,--to large. 

3. CONCLUSIONS 
Results of using the two methods for analyzing sampling 

rate problems substantiate Barnett iand Clarkson’s 
findings that the errors in a computed mean wind (using 
pilot-balloon data) through a layer tend to be smaller 
the larger the layer. 

However, it is also shown, rather conclusively, that 
many observations through a layer will provide much 
better average wind estimates than only two, Le., one 
a t  the bottom and one at  the top of the layer. 

Qualitative analyses of the equations for combined 
precision and operator errors show that automatic 
tracking systems should be used for pilot-balloon wind 
computations. 
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